
Fault Coverage Analysis in Respect to an FSM Specification*

Mingyu Yao, Alexandre Petrenko** and Gregor v. Bochmann

Wpartement d’informatique et de recherche opCrationnelle
Universitk de Montreal, CP. 6128, Succ. Centre Ville, Montdal (Quebec), Canada H3C 3J7

Abstract

It is shown in this paper that the problem of deciding if
a test suite generatedjfom a finite state machine provides
complete fault coverage can be converted into the
problem of minimizing the test tree representing the test
suite. A fault coverage analysis procedure, capable of
deciding if a given test suite provides complete fault
coverage in respect to a given FSM spec$cation, is then
developed. The core of this procedure is a state
minimization procedure developed specifically for the
class of FSMs whose graphic representations are trees.
The fault coverage analysis procedure can cope with
partially specified FSM speciflcations which need not be
reduced and faults that increase the number of states up
to a chosen upper bound. Two necessary and one
suficient conditions, which in some cases may simplify
the fault coverage analysis, are also presented

1 Introduction

Apart from its traditional applications in the
development of sequential digital circuits, the finite state
machine (FSM) model has been extensively used in recent
years in the conformance testing of communication
protocols. Quite a number of methods have been proposed
in the literature for generating test suites from finite state
machines [Uralgl, SiLe89J. It is well known that.,
however, not all of these methods can generate from a
given FSM a test suite which is powerful enough to detect
all possible faults in an implementation under test (IUT).
Therefore, an important issue related to the test suite
generation is to evaluate the quality, often called the fault
coverage, of a test suite generated somehow f” a given
FSM. Most of the existing work that has been done on this
issue are based on Monte-Carlo simulation DaSa88,
SiLe89, DDB91, MCS931 to estimate the fault coverage
ofatestsuite. Our primary purpose in thispaper is to

develop a systematic approach which can decide if a test
suite provides complete fault coverage and therefore is
capable of detecting all possible faults in an IUT.

To minimize a state machine is to find another machine
which has the least numbex of states but can fulfill all the
functions of the original machine. The problem of state
minimization was a very active research area in the study
of automata theory from the 50’s through to the ~O’S,
mostly in relation with the synthesis of sequential circuits.
The bask motivation is that an FSM used to model a
sequential circuit under development often contains
redundant states, i.e., states whose functions can be
accomplished by other states. As the number of memory
elements required for a physical realization of the FSM,
i.e., the sequential circuit, is directly related to the number
of states, the minimization of the number of states can in
many cases reduce the complexity and cost of the
realization. Although it is quite simple to minimize a
completely specified machine, it can become in general
very complex to minimize a partially specified machine.
Therefore most work on state machine minimization has
been done for partially specified machines [Gins59,
GrLu65, Ke1170, Ke1171, PaUn59, Unge651.

It will be shown in this paper that the problem of
deciding if a test suite provides complete fault coverage
can be converted into the equivalent problem of
minimizing the state machine which represents the test
suite in the form of a tree. Therefore, we will frst develop
a state minimization procedure for the class of FSMs
whose graphic representations are trees. This
minimization procedure will combine the advantages of
Kella’s two state minimization approaches [Ke1170,
Ke11711 and provide some features required for its
application to the fault coverage analysis. We will then
propose a fault coverage analysis procedure which starts
with the conversion of a given test suite into a tree FSM
and then calls the state minimization procedure to
minimize this tree FSM. If, as a result of the minimization
of this tree FSM. an FSM is found which cannot . - -

accomplish all the’ input/output traces specified in the
given FSM specification, the test suite is considered to be This research was supported by a grant from the Canadian

for ~ ~ l ~ ~ ~ ~ ~ i ~ ~ t i ~ ~ ~ Research under the NCE unable to provide complete fault coverage. On the other
program of the Government of Canada, and the IDACOM- hand, if no such FSM is found, the given test suite is said
NSERC-CWARC Industrial Research Chair on to provide complete fault coverage. The fault coverage

** Communication Protocols at Universit6 de Montrkal. analysis procedure can be applied to test suites generated
On leave from the Institute of Electronics and Computer from specified specification machines which Science, Riga, Latvia.

*

6c.l.1
768 0743-166XB4 $3.00 0 1994 IEEE

need not be reduced. It can also cope with faults that
in- the number of states up to a chosen upper bound.

The rest of the paper is organized as follows. The FSM
model is first presented in Section 2. The concept of
complete fault coverage of a test suite is defined in
Section 3. A state minimization procedure for tree
machines is then developed in Section 4. It is then shown
in Section 5 that the minimization procedure for tree
machines can be used to decide if a test suite provides
complete fault coverage. Two necessary and one
sufficient conditions are also given there which may in
some cases simplify the fault coverage analysis. Finally in
Section 6, our approach is compared with related work.

2 TheFSMmodel

A finite state machine, often simply called a machine
throughout this paper, is essentially an initialized Mealy
machine defined below.

Definition 2.1: A finite state machine is a 7-tuple <S.
X, Y, S1, 6, h. D>, where
S is a state set {Sl, S2, ..., S,) with SI as the initial state;
X is a finite set of input symbols;
Y is a finite set of output symbols;
D is a specification domain which is a subset of S x X;
6 is a transfer function 6: D --> S;
h is an output function h: D --> Y.

An FSM is said to be completely specified, iff D = S x
X. Otherwise it is said to be partially or incompletely
spec$ed. Since S and h are required to be functions, this
FSM model is deterministic. That is, for each (Si, x) Q D,
there should be exactly one state Sj Q S and exactly one

y. In this case, we say there is a transition f'rom state si to
Sj with input x and output y. Such a transition is usually
written as Si -x/y-> Sj. An FSM can be given in a graph
form, with the states and transitions of the FSM
represented by the vertices and arcs of the graph,
respectively. An example of a graphic representation of an
FSM is given in Figure 1.

Output symbol y c Y Such that &Si, X) = S. and X(Si, X) =

I I

Figure 1: An FSM

For an alphabet Z, Z* represents the set of words
constructed on Z and "E" represents the empty word, i.e.,
the word consisting of no symbol. The dot " e " is used to
represent the concatenation operation of two words.
However, this dot symbol is often omitted when no
ambiguity arises.

Definition 23: Let p = xlX2"'xk E x*. p is said to be a
defined input sequence for state Si e S, if there exist k
states Sil, Sil, ..., si, c S and an output sequence q =
yIyz...yk c Y such that there is a sequence of transitions

in the finite state machine.
We use v(Si) to denote the set of all the defined input

sequences for state Si. A sequence of transitions, such as
the One in (2-1). can be abbreviated aS Si -p/q-> si, if We
are not interested in the intermediate states. When we do
not care about the output sequence, it can be further
simplified as Si -p-> Sik, with the meaning that the FSM,
when in state Si and given an input sequence p, will enter
state Sik. Therefore, the definitions of the transfer function
6 and output function X can be naturally extended to apply
not only to single inputs, but also to sequences of inputs.

s i-xl/y 1 ->si 1 -x2/y2->s i2-> ... -> Sik-1 -xk/yk->sik (2-1)

Definition 23: Let p = x1x2"'xk e v(Si). Then,
&si, E) = si,
%si, E) = E. h(si, p) = p').h(G(Si, p'), xk)

&si, p) = &&si, p.1, xk)

where p* = XlX2"'Xk.l.

Definition 2.4: Two states Si and Sj of a machine M
are Said to be compatible states, written as Si = Sj, if for
V P Q v(Si) n w<Sj), A(&, P) = h(Sj, P). Otherwise, they
are Said to be distinct states and written as Si ?; Sj.

We note that, according to the above definition, if
W(Si) f l W<Sj) = 0, then Si is compatible with Sj. If the
FSM happens to be completely specified, then the
definition of compatible states given above reduces to the
definition of equivalent states [Gi1162, Koha781.

Defmition 2.5: A machine is said to be reduced if, for

Defmition 2.6: Let C & a subset of states. C is said to
be a compatible class if, for any pair of states Si, Sj Q C.

Obviously, any subset of a compatible class is also a
compatible class.

Definition 2.7: A compatible class C is said to be
" a 1 if, for any state Si 4 C, there exists Sj tz C such

It is easy to see that once we have found all the
maximal compatible classes, we have essentially also
found all the compatible classes as any compatible class
should be a subset of some maximal compatible class. For
a subset B of states and an input symbol x, we use
NEXT(x; B) to denote all the states which can be reached
under input x from states in B, i.e.,

any pair of states Si and S. Si t Sj.

Si s Sj.

that Si + Sj.

NEXT(x; B) = { &Si, X) I Si e B and &Si, X) defiined }.
Definition 2.8: For a compatible class C and any input

x, NEXT(x; C) is also a compatible class and is said to be

Defmition 2.9: Let CS = { C1, C2, ..., c k } be a set of
an implied compatible class of C under input x.

compatible classes.
(1) CS is called a compatible covering if

c1 U c, U ... U Cr= { s,, s*, ..., Sn};
(2) CS is said to be closed if for any C, E CS and any

input x, there exists Cj CS such that NEXT(x; Ci,
C_ Cj;

6c.l.2
769

(3) CS is said to be a closed compatible covering if it is
a compatible covering and closed;

(4) CS is said to be a minimal closed compatible
covering if it is a closed covering containing the

Definitlon 2.10: Let M and M be two FSMs with the
same input symbol set and h-1 and & be their output
functions respectively. State Si of M is said to cover (or
contain) state Sj’ of M if and only if v(Sj’ E w(Si) and

Deflnition 2.11: Let SI and S1’ be the respective initial
states of the machines M and M’ with the same input
symbol set. Then M is said to cover M‘ if and only if S1

Apparently, if machine M covers machine M, then M
can be replaced by M, since all the functions of M (in
terms of its specified input/output traces) can be
accomplished by M. The machine cover relation given in
Definition 2.11 is essentially the same as the quasi-
equivalence relation in [Gill621 and the CONF relation in
[YPB93]. When both M and M are completely specified,
the machine cover relation becomes the well-known
equivalence relation for initialized machines [Koha78,
Gill62, Chow78, etc.].

Definition 2.12: A reduced FSM which covers a non-
reduced FSM is said to be a reduced form of the non-
reduced FSM. A reduced form which has the least number

We note that, for a completely specified FSM, its
reduced form and minimal form are the same and unique.
For a partially specified FSM, however, both its reduced
and minimal fcnms can be non unique Koha781.

3 Complete fault coverage of a test suite

Testing based on the FSM model that has been
extensively used in the conformance testing of protocols
as well as traditional hardware testing is basically black-
box testing. The FSM based black-box testing is
essentially “the testing of an FSM implementation”
Wral91, Yann911: given an FSM specification (denoted
as Ms) and an implementation of this FSM (denoted as
MI), one is asked to decide, through the testing of MI as a
black-box, whether MI is a valid implementation of Ms
according to certain predefined criterion often called an
implementation relation or a conformance relation
[YPB93]. For deterministic FSMs, as discussed
throughout this paper, the machine cover relation given in
Definition 2.11 is the strongest relation that can be tested
and is essentially the same as the CONF relation defined
in [YPB93]. For further discussion, we need to introduce
the following concepts.

Definition 3.1: Let SI be the initial state of a
specification machine Ms. A test case (or test sequence) is
an input sequence of finite length and defined for S1. i.e.,

Each test case starts from the initial state S1 of the
specification machine and will be applied to the initial

least number of compatible classes.

h-l(Si, P) = &(Sj’, PI, fa VP 6 v(Sj’).

covers S1’.

of states is said to be a minimal form.

in y(Sl). A test suite is a finite set of test cases.

state of an implementation machine under test. Therefore,
a special input symbol “r” called reset is used at the
beginning of each test case. When the rest symbol “r” is
applied, an implementation machine will transfer to its
initial state no matter which state it is currently in.

Definition 3.2: Let MI and Ms be an implementation
machine and a specification machine, respectively. Let AI
and & be their respective output functions, and I1 and SI
be their respective initial states. For a test suite TS, MI is
said to pass TS, written MI pass TS, if&(Il, t) = &(SI, t)
for V t c TS.

It is well known in the literature Wral91, Yann911 that
testing if a black-box FSM implementation covers (i.e.
conforms to) a given specification machine can only be
done under certain assumptions. One most notable
assumption is that the number of states of an
implementation machine should be limited by an upper
bound m (which can be larger than n, the number of states
of the specification machine). Therefore, we need to
introduce the following definition.

Definition 3.3: Let X be the input set of the given
specification machine Ms, the set of implementation
machines with number of states limited by an upper
bound m is denoted by I(m, X) which consists of all the
minimal completely specified machines with no more
than m states.

As we have seen in the above definition, an FSM
representing an implementation (i.e., a machine in I(m,
X)) is required to be completely specified. This is because
it is treated as a black-box during testing and therefore
should give an observable response to any input in the
input set X [PBD93]. As any non-minimal completely
specified machine is equivalent to its minimal form, we
have to include only the minimal machines in I(m, X).

Definition 3.4 Let TS be a test suite. TS is said to be
an m-complete test suite in respect to the given
specification machine Ms if, for any machine MI 6i H(m,

The notion of an “m-complete” test suite given above
is a more general version of the notion of a “unique” test
suite introduced in [VuKo90]. For the specification
machine Ms which is completely specified and therefore
is in I(m, X) (when m 2 n), a test suite is said to be its
unique test suite in respect to the upper bound m if Ms is
the only machine in I(m, X) which can pass the test suite.
In the case that the specification machine Ms is partially
specified, the notion of an “m-complete” test suite given
in Definition 3.4 should be used. An obvious way to
verify if a test suite is m-complete is to use the “trial-and-
error” method: take a machine from I(m, X) and check if
it can pass the test suite and if so, further check if it covers
the given specification machine. Repeat this operation
until either a machine is encountered which passes the test
suite but does not cover the specification machine or all
the machines in I(m, X) are examined. In the former case
we can conclude that the test suite is not m-complete
while in the latter case we can say it is m-complete.
Apparently, the practical application of this approach is

X), MI passes TS if and only if MI covers &.

770
6c.l.3

rather limited due to its high cost. This is the main reawn
that some researchers [Dasa88, SiLe89, DDB91, MCS931
have used simulation approaches to approximately
estimate the fault coverage of a test suite.

4 The minimization of finite state machines

To minimize a non-reduced machine is to find a
minimal form of the original machine. The minimization
of a completely specified machine is quite easy and can be
done in two steps: (1) to find the minimal equivalence
partition on the set of states of the given machine such
that two states are in the same block ifand only ifthey are
equivalent; and (2) to merge all the states in a block into
one state. The machine obtained after these two steps is
the reduced and minimal form of the original machine and
is equivalent to the original one. However, it becomes
much more difficult to minimize a partially specified
machine. As previous work has shown [Gins59, GrLu65,
PaUn59. Unge65, Koha78, Gill62 etc.], to find a minimal
form for a partially specified machine requires to find a
minimal closed compatible covering. Unfortunately, there
is no simple and precise procedure leading to the selection
of a minimal closed compatible covering from all the
compatible coverings. Therefore, all the Froposed
approaches [Gins59, GrLu65, PaUn59, Unge65, Koha78.
Gill62 etc.] are inherently based on trialand-error.

Our primary purpose in this section is to develop a
state minimization procedure for a special class of
machines which we call tree machines. Basically, a tree
machine is a finite state machine whose graphic
representation is a tree with the initial state of the machine
as the root of the tree. It follows from the property of a
tree that all the states of a tree machine can be reached
from its initial state and for each state Si (except the initial
state) of a tree machine, there is one and only one other
state Sj (i # i) such that there is a transition leading from
Sj to Si. This allows US to simplify the minimization
procedure for the tree machines in a way similar to one of
Kella's work [Ke117 11.

Definition 4.1: A compatible panition is a compatible
covering which consists of pair wisely disjoint compatible
classes. A closed compatible partition is a compatible
partition which is closed. A minimal closed compatible
partition is a closed compatible partition which consists of

The simplification on the minimization procedure in
the case of a tree machine is stated in the next lemma.

Lemma 4.2: A reduced form of a given tree machine
corresponds to a closed compatible partition of the tree
machine. When a closed compatible partition is minimal,

Kella proved in [Ken711 a special case of this lemma
where the tree machine has only one branch. The proof
given there is actually also valid in the general case where
the tree machine has several branches. This lemma
implies that only minimal closed compatible partitions,
rather than minimal closed compatible coverings, need to

a minimum number of compatible classes.

its corresponding reduced form is also minimal. H

be found for the construction of the minimal forms of a
given tree machine. As is clear from the definitions, a
compatible parrition is also a compatible covering, but not
vice versa. Therefore the set of all compatible partitions is
a subset of all compatible coverings and actually in most
cases, the former is much smaller than the latter. This
implies that the amount of search for a minimal closed
compatible partition from the set of all compatible
partitions can in most cases be much smaller than the
amount of search for a minimal closed compatible
covering from the set of all compatible coverings.

Let X1, Y1, Z1, zlr 61, hl, D1 be the input symbol set,
the output symbol set, the state set, the initial state, the
transfer function, the output function and the specification
domain of machine M1; and similarly Xz, Yz, &, zz, &,
&, D2 for machine Mz .

Definition 43: M1 is said to be a submachine of Mz if
Xi E Xz, Y1 E Yz, 21 C 22, D1 C Dz, ~1 = zz and 61, hl
are the reswtive restrictions of &, & to D1.

We use M to denote a reduced form of M and {]
for the set all the reduced forms of M.

Definition 4.4: For Gachine M1 and a submachine Mz
of M1, a reduced form M Lof M1 is said to be b@ on a
reduced form M z of Mz if Mz is a submachine of MI.

Let {Vl, Vz, ..., V,} be the state set of a given tree
machine M. We use M(1), M(2), ..., M(w) to denote its w
submachines, where M(i) is obtained from M by deleting
the last (w-i) states Vi+lt Vi+2, ..., Vw and all the
transitions leading from/to these states. Then the
minimization of M is based on the idea that { M(i) } can
be_generated by adding state Vi to all the reduced forms in
(M (i-1) 1. This is justified by the following lemma.

Lemma 4.5: h-h reduced form M(i) of M(i) is based
on a reduced form M(i-1) of M(i-1).

This lemma is a special case of a relevant theorem
proved in [Ke1170]. It has been proved there that this
conclusion holds for a more general class of machines
which includes the tree machines.

Definition 4.6: A compatible class C of the tree
machine M is said to be compatible with a state Vi,
written Vi = C, if Vi 5 Vj, for V Vj E C. Otherwise C is
said to be incompatible with state Vi, written Vi + C.

Definition 4.7: Let E = { C1, Cz, ..., CQ } be a set of
pair wisely disjoint compatible classes, i.e., Ci n Cj = 0,
for i # j. Then E is said to be incompatible with a state Vi,

We present in the followmg a procedure which, when
given a reduced form M(i-1) of M(i-1), will incorporate
the next state Vi to generate all the reautxd forms of M(i)
which are based on this particular M(i-1) and have no
more than m states, where m is a given integer
representing the upper bound on the number of states of
any reduced form. Therefore this procedure has three
input parametgs: the upper bound m, state Vi and the
~educed form M(i-1). As Lemma 4.2 indicates, the given
M(i-1) corresponds to a closed compatible partition which,
without loosing generality, is denoted as E = {Cl, Cz, ...,
c k } on the state set {Vl, V2, ..., Vi-l).

written as Vi + E, if Vi i% C,., for j = 1,2, ..., R. H

6c.l.4
I71

Rocedure 4.8
Stepl:

Step2

step3:

Step4:

Steps:
a)

b)

Step5
a)

b)

step7:
a)

b)

If Vi $; E, i.e., Vi $; CO for V Cj ci E, go to Sw3;
otherwise go to step 21
Let Cj = {Vi } U Cj, i.e., add Vi to C* for all Vi

Cj. Replace, one at a time, Cj in E by Cj to
form a compatible covering (actually a
compatible partition on the set of states { V 1, V2,
..., Vi}. Push all such generated compatible
coverings to the stack COVSTACK and then go

If k < m, generate all maximal compatible classes
of M(i) which include Vi. Add each of these, one
at a time, to E to form a compatible covering on
{VI, Vz, ..., Vi). Push all such generated
compatible coverings to the stack COVSTACK
and go to Step4. Otherwise, i.e., if k = m, discard
the compatible partition E and terminate.
Pop a compatible covering B from the stack
COVSTACK. If COVSTACK is empty,
terminate; otherwise go to the next step.
Check if the compatible covering B is closed.
If B is closed, delete in all possible combinations
the multiple appearances of states in B to form
compatible partitions. Discard all those
compatible partitions which are not closed.
Record each of the remaining closed compatible
partitions as a reduced form M(i). Go to Step4.
If B is not closed, i.e., there exists a compatible
class B. ci B and an input symbol x such that
NEXTtx; Bj) is not included in any compatible
classes in B, then go to Step6.

If Bj only includes states which are not included
in any other compatible class in B, go to Step7.
If Bj includes some states which are also
included in some other compatible classes in B,
delete these states from Bj one at a time to form
as many new compatible coverings as there are
such states. Push all these new compatible
coverings to the COVSTACK and go to Step4.

If the number of compatible classes in B is equal
tom, discard B and go to Step4.
If the number of compatible classes in B is less
than m, form all the maximal compatible classes
of M(i) which include NEXT(x; Bj) and missing
in the original covering B (after adding back ail
states deleted in previous steps). Add each of
these maximal compatible classes, one at a time,
to B to form a number of new compatible
coverings. Push these new compatible coverings

to step4.

to COVSTACK and go back to Step4.

The explanation of how this procedure works can be
found in [yPB94a]. The algorithm of Procedure 4.8 is
developed based on Algorithm 2 in [Ke1170]. Although
these algorithms look quite similar, some improvements
of the former on the latter can still be observed. Firstly, as

proved in Lemma 4.2, only closed compatible par-tions
need to be considered in the construction of M(i)’s.
Therefore, in Step 5 of Procedure 4.8, only the closed
compatible partitions implied by a closed compatible
covering are kept while others are discarded. This will
reduce the amount of work required for the construction
of { M(i+l)) when the next state Vi+l should be added.
Secondly, since an upper bound on the numbex of states of
a reduced f m is imposed in Rocedure 4.8, a compatible
covering can be dropped out from further consideration
whenever its number of compatible classes exceeds that
upper bound. This feature, not found in Kella’s algorithm,
is specifically added in procedure 4.8 for its application in
checking the m-completeness of a test suite.

The next procedure, Procedure 4.9, is developed for
state minimization of tree machines. Apart from the tree
machine M with w states (V1, VZ, ..., Vw) which needs to
be minimized, this procedure takes two additional input
parameters: an upper bound m and a reference machine
Mr which covers the tree machine M. It then calls
Procedure 4.8 to incorporate, one at a tims, the states V 1,
V,, ..., V, in search for a reduced form M (of M) which
has the least number of states and does not cover the
reference machine Mr. It stops when either such a reduced
form M is found or no such reduced form can be found
(due to the upper bound m imposed on the number of
states of the reduced form).

Procedure 4.9
Stepl:

step2:

step3:

Step4:

steps:

Use some procedure (can be found in many
references) to find all pairs of compatible states
fur @e given ~ e e machine M.
Let M(1) = {Vl) . Add it to the reduced form list
RLIST (which is initially empty).
If the list RLIST is empty, it can be concluded
that no reduced form (of the tree machine),
which does not cover the reference machine Mr,
can be found within the upper bound m on the
number of states and therefore te-pinate.
Otherwise, take a reduced form M (i) from RLIST
which has the least number of states (if more
than one is available, take one with the largest i)
and then go to the next step.
If i = w, go to Steps.
Otherwise (i.e. i < w), call Procedure 4.8, with
- the upper bound m, state Vi+l and the chosen
M(i) as input parameters, to gengate all the
reduced formcM(i+l) based on this M(i). Add ail
the genera-ed M (i+l)’s to RLISTand go to Step3.
Check if NB) covers the referencemachine Mr.
If not, this M(i) is a reduced form M that is being
searched for and therefore terminate the
procedure. Otherwise, go back to Step3.

As priority for further consideration in Step3 is always
given to a reduced form which has the least number of
states (i.e. its corresponding closed compatible partition
has the least number of compatible classes), this

6c.l.5
772

procedure guarantees that the reduced form M, if can be
found, has the least number of states and does not cover
the given reference machine Mr. Algorithms can be found
in the literature (see, for instance, [Gill62]) to check
whether one machine covers the other (Step 5).

5 Checking the completeness of a test suite

We can now use Procedure 4.9 to check if a given test
suite is, for an integer m, m-complete in respect to a
specification machine Ms. The idea is to first represent the
test suite as a tree machine, and then use Procedure 4.9 to
minimize this tree machine with m as the upper bound and
Ms as the reference machine Mr. The test suite is m-
complete if and only if no reduced form can be found
which does not cover the specification machine M,

The conversion of a test suite into a tree machine can
be done in a quite straightforward way. A branch (starting
from the root of the tree) is created for each test case in
the test suite. The number of edges in a branch is equal to
the length of the corresponding test case (without
counting the reset symbol “r”). An edge is labeled by a
pair of input and output symbols. The concatenation of the
labels on the edges of a branch forms an inpudoutput
sequence which should be the same as the one obtained
when the corresponding test case is applied to the
specification machine. Whenever two test cases have a
common prefix, their corresponding branches should be
merged for that common part so that the tree machine will
be deterministic. The procedure for checking the
completeness of a test suite in respect to an FSM
specification can now be formulated as follows.

L

Incompatible
state states
VI vs V6
v2

v3

VI
v5 VI
V6 VI

Procedure 5.1:
Stepl: Convert the given test suite TS into a tree

machine M.
Step2: Call Procedure 4.9 to minimize this tree

machine M with m as the upper bound and Ms as
the reference machine.

Step3: If no reduced machine is found in Step2 which
does not cover Ms, the test suite is m-complete;

H Otherwise, it is not m-complete.

The validity of this procedure is justified by the
following theorem.

Theorem 5.2: Let TS be a test suite and M be the tree
machine representing TS. Then TS is m-complete in
respect to the FSM specification Ms if and only if all the
reduced forms of M which have not more than m states

The proof for this theorem is omitted due to limited
space. We give an example here to show how this
procedure works.

Example 5.3: TS = {r.a.b.b, r.b.a.a} is a test suite
derived from the specification machine shown in Figure 1.
We are required to check if this test suite is 3-complete.
Therefore, we follow Procedure 5.1 to check. The first
step of Procedure 5.1 is to convert this test suite into a

cover the specification machine Ms. H

Figure 2: The tree machine

Table 1: The list of
incompatible pairs by Procedure 4.9

Figure 3: The FSM found

Iterations

1

2

3

4

5

6

7

RLIST

{ VIV2)

{ VIV2V3)

{ VIV2V3V4 }

{ VI, v2V3v4VS) { VIVl, v3v4v5)
{ VIV3, v2v4vs) { VIV2V4, vsvs)

{ VI, v2v3v4VSv6) { vlv2, vSV4v5)
{ VIV3, v2v4vs) { VIV2V4. v3v5)

Table 2: Contents of the reduced form list RLIST

tree which is now shown in>Figure 2. This tree machine
has 7 states VI, Vz, ..., VI. The second step of Procedure
5.1 is to call Procedure 4.9 whose first step is to find the
compatibility for each pair of states of this tree machine.
We have listed in Table 1 the incompatible states for each
state of the tree machine. A state not listed as
incompatible with another state is therefore compatible
with the latter. Table 2 lists the changes of the reduced

6c.l.6
773

fonn list RLIST when the remaining steps of Procedure
4.9 are executed. At the last iteration, the closed
compatible partition (V1, V2V3V4V5V6V7} is found
which actually represents the FSM shown in Figure 3.
Since this FSM has two states and does not cover the
specification machine shown in Figure 1, we can conclude

Although the procedure presented above can always be
used to check if a given test suite is m-complete, the two
necessary conditions and one sufficient condition given
below can in some cases be used to give a quicker answer.

Let TS be a test suite for an FSM specification Ms with
6, h and ISl, S2, ..., S,,} as its transfer function, output
function and state set, respectively. Further, let S1 be its
initial state. To formulate these conditions, we need the
following three definitions.

Definition 5.4: A set of input sequences SC is said to
be a state cover set of the specification machine MS if, for
each state Si of Ms, there exists exactly one input

Deflnitbn 5.5: A set of input sequences TC is said to
be a transition cover set of the specification machine Ms
if for each rransition Si-x->Sj in the specification machine
Ms, there exist two input sequences a, a.xc TC such that

Definition 5.6 & SC be a state cover set for Ms and
TC = {a.x I for acSC, Si=&Sl, U) and Si-X->Sj in Ms).
Then TC is a transition cover set of Ms and is said to be
based on the state cover set SC. w

A P (T S) = { a I if a is a prefix of some test case in TS},
i.e., AP(TS) consists of all the prefixes of the test cases in
TS. Then we can have our first necessaxy condition.

Necessary Condition 5.7: If, for some m 2 n, TS is m-
complete in respect to Ms. then AP(TS) should contain a
state cover set. w

This necessary condition essentially says that an m-
complete (m 2 n) test suite should traverse all the states of
the specification machine. Actually, we can have a
stronger necessary condition stated below which requires
that all the transitions of the specification machine be
traversed by a complete test suite.

Necessary Condition 5.8: If, for some m 2 n, TS is m-
complete in respect to Ms, then AP(TS) should contain a
transition cover set. w

The validity of these two necessary conditions are
obvious. Actually we require that Procedure 5.1 be used
only after the test suite TS has been checked to satisfy
these two necessary conditions. The following condition
is a sufficient condition which can be used when the
specification machine Ms is reduced. TS will be definitely
ncomplete, where n is the number of states of the reduced
machine Ms, if it satisfies this sufficient condition.

Sufffcient Condition 5.9: TS is an n-complete test
suite in respect to rhe reduced specification machine Ms if
(1) AP(TS) contains a state cover set SC and a transition

that the test suite TS is not 3-complete.

sequence a SC such that Si = &SI, a). w

Si = &SI, U) and S &SI, a). w

Let

cover set TC based on SC; and

(2) For each pair of sequences a, p c SC such that 6(S1,
a) f &S1, b), there should be two sequences ay, fly c
W"9 such that V&Sl , a), Y) # M W 1 , p), Y); and

(3) For a Q (TC - SC) and c SC such that &S1, a) #
&SI, fl 1, there should be two sequences ay, By c
AP(TS) sua that V&S1, a), Y) # VW1, 81, Y).

Tbe proof for this sufficient condition is omitted here
due to limited space. It is interesting to note that any test
suite generated by the DS method [Gone70], the UIOv
method [Vuon891, the W method [Chow78], the Wp
method Fuji911 or the HSI method [petr91] satisfies this
sufficient condition and therefore is n-complete.

6 Compivison with related work

In this paper, we have introduced the concept of m-
completeness of a test suite in respect to an FSM
specification. This concept is more general than the
concept of uniqueness of a test suite introduced by Vuong
and KO [VUKO~O]. The notion of uniqueness of a test
suite is applicable only to completely specified machines.
The notion of m-completeness of a test suite, however,
can be applied to partially specified as well as completely
specified machines. It even does not require the
specification machines to be reduced. We have also
developed a procedure (procedure 5.1) which is capable
of deciding if a given test suite is m-complete in respect to
a given FSM specification, where m is an integer which
can be larger than the number of states of the specification
machine. A tool which implements this procedure is now
available. ?be complexity upper bound of the procedure
is O(mW), where w is the number of states of tree machine
representing the test suite. However, experiments that
have been conducted with the tool has demonstrated that
the real complexity in practice is far less.

Procedure 5.1 is based on the state minimization
procedure (Procedure 4.9) designed for the so-called tree
machines. Procedure 4.9 and the procedure that i t calls
(Procedure 4.8) combine the advantages of Kella's two
approaches [Ke1170, Kell711. As already mentioned in
Section 4, they also provide two important features which
are not found in previous state minimization procedures
[Gins59, GrLu65, Ke1170, Ke1171, PaUn59, Unge651.

Procedure 5.1 provides a systematic approach for
checking the completeness of a test suite and therefore is
different from those simulation based approaches
lDaSa88, SiLe89, DDB91, MCS931. It also differs from
our recent work [YPB94b] where we proposed a metric
approach to estimating the fault coverage of a test suite.
Another related work is the CSP method for test suite
generation [VUKO~O] which could be adjusted to check
the m-completeness of a test suite. However, its
complexity in practice would be much higher than our
method as it would generate all machines, both reduced
and non-reduced (within the upper bound on the number
of states), which can pass the given test suite. On the other
hand, our Procedure 5.1 examines, in the worst case when
the given test suite is m-complete, all the reduced

6c.l.7
774

machines within the upper bound on the number of states.
Other related work can be found in LoSh92, MiPa921.
However, their primary purpose is to generate test suites
that provide complete fault coverage (or maximal fault
coverage as they called) rather than to evaluate the fault
coverage of a given test suite.

Apart from its application in checking the
completeness of a test suite, Procedure 5.1 can also be
used for incremental test suite development. Actually, this
function is now available in our tool. If a given test suite
(which can be empty) is not m-complete, a machine will
be found which does not cover the specification machine.
Therefore, an additional test case can be derived which
distinguishes this machine from the specification
machine. The test suite, which includes the newly
generated additional test case, is then checked again for
m-completeness. This process is repeated until the test
suite has achieved m-complete fault coverage.

Another possible application of the state minimization
procedure (Procedure 4.9) is the diagnostics for FSM
implementations [GhBo92]. If an FSM implementation
for an FSM specification fails to pass a given test suite, a
tree machine is constructed with the input sequences (test
cases) in the test suite and the corresponding output
sequences observed during the testing. This tree machine
is then minimized. However, no reference machine is
required during the application of Procedure 4.9 in this
case and therefore a reduced machine can be definitely
found. This reduced machine is actually a minimal form
of the tree machine. By comparing this minimal machine
with the specification machine, we are able to tell what
faults are in the implementation machine.

References
[Chow781

[DaSa88]

[DDB91]

[Fuji9 11

[Gill621

[Gins591

[Gone701

[GhBo92]

[GrLu65]

T.S. Chow, “Test Design Modeled by Finite- State
Machines”, IEEE Trans. SE-4, 3,1978, pp.178-187.
A.T. Dahbura and K. Sabnani, “An Experience in
Estimating Fault Coverage of a Protocol Test”,
Proc. INFORCOM88, pp. 71-79.
M. Dubuc, R. Dssouli and G.v. Bochmann,
‘ W S T L : A tool for Incremental Test Suite Design
Based on Finite State Model”, Proc. IWP”91.
S. Fujiwara, et al., ‘Test Selection Based on Finite
State Models”, IEEE Trans. SE-17, 6, June 1991,

A. Gill, “Introduction to the Theory of Finite-State
Machines”, McGraw-Hill Book Company, Inc.,
1962,207 p.
S. Ginsburg, “On the Reduction of Superfluous
States in a Sequential Machines”, J. ACM. Vol. 6,

G. Gonenc, “A Method for the Design of Fault
Detection Experiments”, IEEE Trans. Computers,
Vol. C-19, No. 6, June 1970, pp. 551-558.
A. Ghedamsi and G.v. Bochmann, “Test Result
Analysis and Diagnostics for Finite State
Machines”, Proc. of the 12th International
Conference on Distributed Systems, Yokohama,
Japan, June 9-12, 1992.
A. Grasselli and F. Luccio, “A Method for
Minimizing the Number of Internal States in

pp. 591-603.

1959, p ~ . 252-282.

[Kell70]

[Kell71]

[Koha781

[LoSh92]

[MCS93]

[MiPa92]

[NaTs8 I]

[PaUn59]

[PBD93]

[Pet1911

[SiLe89]

[Unge65]

[Ural91]

[vuK0901

[Vuon89]

[Yann91]

[YF’B93]

[YPB94a]

[YPB94b]

Incompletely Sequential Networks”, IEEE Trans.
Electronic Computers, Vol. EC-14, June 1965,

J. Kella, “State Minimization of Incompletely
Specified Sequential Machines”, IEEE Trans.
Computers, Vol. C-19, No.4, April 1970, pp. 342-
348.
J. Kella, “Sequential Machine Identification”, IEEE
Trans. Computers (Short Notes), Vol. C-20, No. 3,

Z. Kohavi. “Switching and Finite Automata
Theory”, New York. McGraw-Hill, 1978.
F. Lombardi and Y.N. Shen, “Evaluation and
Improvement of Fault Coverage of Conformance
Testing by U10 Sequences“, IEEE Trans.
Commun., Vol. COM-40, 8, August, 1992,
pp. 1288-1293.
H. Motteler, A. Chung and D. Sidhu, “Fault
Coverage of UIO-based Methods for Protocol
Testing”, Proc. IWFlS’93.
R.E. Miller and S. Paul, “Structural Analysis of a
Protocol Specification and Generation of a
Maximal Fault Coverage Conformance Test
Sequence“, submitted for publication.
S. Naito and M. Tsunoyama, “Fault Detection for
Sequential Machines by Transition-Tours”, Proc.

M.C. Paul1 and S.H. Unger, “Minimizing the
Number of States in Incompletely Specified
Sequential Switching Functions”, IRE Trans.
Electronic Computers, Vol. EC-8, Sept. 1959,
p ~ . 356-367.
A. Petrenko, G.v. Bochmann and R. Dssouli,
“Conformance Relations and Test Derivation“,
Proc. IWF‘TS’93.
A.F. Petrenko, “Checking Experiments with
Protocol Machines”, Proc. IWPTS91.
D.P. Sidhu and T.K. bung , “Formal Methods for
Protocol Testing: A Detailed Study”, IEEE Trans.
Software Engineering, Vol. SE-15, No. 4, Ami1

pp. 350-359.

March 1971, p ~ . 332-338.

of FTCS, 1981. pp. 238-243.

I

1989, pp. 413-426.
S.H. Unger, “Flow Table Simplification - Some
Useful Aids”. IEEE Trans. Electronic Comwters. . ,
vol. EC-14, 1965, pp. 472- 475.
H. Ural, “Formal Methods for Test Sequence
Generation”, Computer Communications.Vo1. 15,
No. 5 , June 1992, pp. 311-325.
S.T. Vuong and K.C. KO, “A Novel Approach to
Protocol Test Sequence Generation”, Proc.
GlobalCOM’90.
S.T. Vuong, et al., ‘“The UIOv-method for Protocol
Test Sequence Generation”, Proc. IWF’TS’89.
M. Yannakakis, “Testing Finite State Machines”,
Pn>ceedings of the 23rd Annual ACM Symposium
on Theory of Computing, New Orleans, Louisiana,
1991, pp. 476-485.
M. Yao, A. Petrenko and G.v. Bochmann,
“Conformance Testing of Protocol Machines
without Reset”. Proc. of PSTV’93.
M. Yao, A. Petrenko and G.v. Bochmann, “Fault
Coverage Analysis in Respect to an FSM
Specification”, Publication # 896, Dept. IRO,
University of Montreal, Feb. 1994.
M.Yao, A. Petrenko and G.v. Bochmann, “A
Metric Approach to Measuring Fault Coverage of
Software Testing in Respect to the FSM Model”,
submitted for publication.

6c.l.8
775

